
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-1

Work In Progress: Programming in a Confined
Space – A Case Study in Porting Modern Robot

Software to an Antique Platform

Stacey L. Montresor, Jennifer S. Kay, Michel Tokic, Jonathan M. Summerton
smontronj@gmail.com, kay@elvis.rowan.edu,

tokicm@hs-weingarten.de, summer74@students.rowan.edu

Abstract - In a typical introductory AI class, the topic of
reinforcement learning may be allocated only a few
hours of class time. One engaging example of
reinforcement learning uses a crawling robot that learns
to use its two-degree-of-freedom arm to drag itself
forward. Unfortunately, the cost of the required
hardware is prohibitively expensive for many
departments for what is typically a once-a-semester
demonstration. So we decided to port the algorithm to a
platform that many departments may already have on
hand: the LEGO Mindstorms RCX 2.0. Initially the task
seemed relatively straightforward: build a robot base out
of LEGO parts and implement the algorithm in the Not
Quite C language. However the challenges of designing a
robot arm without servos and attempting to trim code
down to a size that would fit on the RCX has proven to
be as educational to the undergraduates working on the
project as we hope the final product will be to students in
AI classes. This paper describes the challenges we have
faced and the solutions we have implemented, as well as
the work that remains to be completed.

Index Terms –Artificial Intelligence, Computer Science
Education, crawling robot, LEGO Mindstorms RCX 2.0, Not
Quite C (NQC), reinforcement learning, robotics

INTRODUCTION

In a typical introductory AI class, the topic of reinforcement
learning [1] may be allocated only a few hours of class time.
Kimura et. al [2] and Tokic et. al [3] developed an engaging
example of reinforcement learning using a crawling robot
that learns to use its two-degree-of-freedom arm to drag
itself forward. The robot learns to move forward using value
iteration or Q-learning [1] over the span of roughly 15-20
seconds. The system is particularly attractive pedagogically
because it incorporates a visualization tool that shows the
two dimensional state space in which the robot actions are
moves to neighboring states in the two dimensional grid
world.
 Appealing as this system is, the expense of purchasing
the specialized robot platform is beyond the means of many
computer science departments for such limited use. We
decided to port the algorithm to a platform that is
inexpensive and that many departments may already have on

hand: the LEGO Mindstorms RCX 2.0 [4][5]. This is from
the first generation of LEGO robotic kits, and has
subsequently been supplanted by the NXT.

Initially the task seemed relatively straightforward:
build a robot base out of LEGO parts supplied with the RCX
2.0 kit and implement the algorithm in the Not Quite C
(NQC) language [6][7]. However the challenges of
designing a robot arm without servos and attempting to trim
code down to a size that would fit on the RCX has proven to
be as educational to the Computer Science undergraduate
students working on the project as we hope the final product
will be to students in AI classes.

ROBOT HARDWARE SETUP

Our LEGO Robot was built in the image of Tokic’s crawling
robot (Figure 1). The LEGO robot is controlled by the RCX
2.0 brick [4][5] which is mounted on top of the robot. The
two arm joints are driven by 9v motors. The first joint
connects the arm to the base and the second joint connects
the “claw” to the arm.

FIGURE 1: TOKIC’S ORIGINAL CRAWLER AND OUR LEGO RCX VERSION

The original RCX sets only provide motors that can be
moved for a particular amount of time, rather than to a
specified angle. Thus we needed to construct a way to sense
the position of the two joints, as well as to determine the
movement of the robot’s single axle wheel. Our first plan
was to supplement the LEGO parts available in the standard
RCX kits with three LEGO rotation sensors (LEGO #9756)
which report changes in rotation rather than absolute
position, but we still needed a way to ensure that the two
joints began in the correct initial positions. We added two
touch sensor bricks (already included with the kit) and
initialize the joints by moving them into their uppermost
positions until the touch sensors are triggered, ensuring that
the start position is always the same. But then we

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-2

encountered the first (of many) limitations we would have to
overcome because of our choice of platform: the RCX 2.0
brick has three input connections. While touch sensors can
be combined on a single input connection, the rotation
sensors cannot and we had to eliminate one rotation sensor.
Further evaluation of the joints showed that the effect of the
force on the claw was harder to predict than the constant
weight of the arm, therefore we opted to keep the rotation
sensor on the claw. However, over time our estimate of the
positions of both joints still degrades. To alleviate this,
whenever the joints are placed in the first or second position,
we reinitialize using the corresponding touch sensor.

CODING IN A CONFINED SPACE

Since our ultimate goal is to create a classroom
demonstration that can be built with hardware that many
schools have on hand or can acquire cheaply, we continue to
believe that our choice of the LEGO RCX platform is a good
one. Nonetheless, compressing the code down to a size that
will fit into its 16K of RAM has been a challenge. NQC
allows only 8 “subroutines” which provide a single copy of
code shared between different callers, but do not have
arguments. There is no limit to the number of inline
"functions” used other than the overall code size must be
within the 16K limit [6].

We implemented the value-iteration learning algorithm
as used on the robot in [3] as closely as the RCX 2.0 brick
would allow. To ensure our understanding of the value-
iteration algorithm, we first simulated the algorithm using
Java using the same reward model as in [3] and confirmed
that our implementation matched the original by successfully
regenerating the same values with our simulation.
 The next step seemed simple, code a few methods to
handle the movements and re-implement the simulated
algorithm using NQC. At this point, it became necessary to
scale down the state-space model used in [3] from 5x5 to
3x3. The RCX 2.0 brick limits us to the use of 32 global
variables and 16 local variables [6]. To implement a 5x5
state space requires 125 variables to store the state and
reward values. By reducing the state space to a 3x3 grid we
maintain a large enough space to include a subset that would
represent an optimal cycle while requiring only 33 variables
to store the state and reward values. Nonetheless, in addition
to the variables needed to store the current state, we needed
to store information about the action to be completed and the
last sensor reading, and so we needed a total of 36 global
variables, still more than we had available.
 NQC variables are 16-bit signed integers. Using bit
manipulation we were able to combine three reward values
into a single variable and we use this technique to store the
left/right reward values. Though this frees up the total
number of variables needed, the additional lines of code to
implement the compression and uncompression algorithm
add to our RAM consumption.

We initially coded the joint movements using three
methods to execute the actual movements to be made.
Within these methods, the compression function needed to

be called which prevented them from being “subroutines”
since in NQC subroutines cannot call other subroutines! To
reduce the memory usage resulting from inline functions,
these three methods were broken down into 24 functions
representing individual moves from one state to the next.
 Due to the lack of variables, we are not able to store
individual state’s policies. Instead, during exploitation we
iterate through all neighboring states and comparing the
possible reward values, choose the action that result in the
greatest reward value.

MODIFYING THE LEARNING ALGORITHM

The discounting factor, γ, of the value-iteration algorithm
has a range 0 < γ < 1. Tokic et. al’s experiments [3] resulted
in a recommended discounting factor of 0.9 for short
learning times finding the optimal cycle. Since the RCX 2.0
brick is restricted to the use of integers only, we are forced
to use a value of 1 for the discounting factor. While setting
the discounting factor to 1 removes the theoretical guarantee
that the value iteration algorithm will converge, we have
demonstrated in simulation that the robot can learn a
potentially suboptimal forward-walking policy with a
discounting factor of 1.
 We used a simple ε-Greedy technique to regulate
exploration and exploitation. This is accomplished by
randomly choosing a value between [0, 1] and comparing it
to ε, which is set to a high value initially and decreased
throughout the learning process. Restricted to the use of
integers, we randomly choose values from [0, 500]. We set ε
to 500 at the start of the learning process. After an action is
completed we decrease ε by 10 similar to [3]. Alternatively,
instead of decreasing the value of epsilon, a constant value
of epsilon (e.g. epsilon=50) may also be used.

CURRENT STATUS

Our hardware design is complete, and we have demonstrated
that our robot can “walk” forward when we hardcode the
sequence of states in our 3x3 grid to be visited. After much
code manipulation, our version of the code is small enough
to be loaded into the RCX 2.0. In our current
implementation, the robot randomly explores and exploits
throughout the 9 possible states and builds the associated
reward table. The resulting values can be viewed through the
Bricx Command Center. We are currently experimenting
with various values for ε that will result in at least a
successful cycle, if not the optimal cycle, for consistently
learning to successfully walk forward.

FUTURE WORK

For classroom use, we would like to transmit the data related
to the states throughout the process into a form that is
accessible to all students that will allow them to evaluate the
steps in determining the optimal cycle. We are also
developing a full web site that will provide step-by-step
instructions on how to replicate our system so that others
may use it in their AI classes.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-3

REFERENCES

[1] Sutton, R. and Barto, A. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

[2] Kimura, H., Miyazaki, K. and Kobayashi, S. 1997. Reinforcement
Learning in POMDPs with Function Approximation. In ICML ’97:
Proceedings of the Fourteenth International Conference on Machine
Learning, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., pp. 152-160.

[3] Tokic, Michel, Ertel, Wolfgang, and Fessler, Joachin, “The Crawler, A
Class Room Demonstrator for Reinforcement Learning”, Proceedings
of 22nd International FLAIRS Conference 2009, AAAI Press, pp. 160-
165.

[4] “LEGO Education: Store: RCX Programmable Brick,”
http://www.legoeducation.us/store/detail.aspx?ID=336&bhcp=1,
accessed March 2010.

[5] “Lego Mindstorms,” http://en.wikipedia.org/wiki/Lego_Mindstorms,
accessed March 2010.

[6] Baum, Dave, NQC Programmer’s Guide, Version 2.5 a4
http://neuron.eng.wayne.edu/LEGO_ROBOTICS/nqc_guide.pdf
accessed October 2010.

[7] “NQC – Not Quite C,” http://bricxcc.sourceforge.net/nqc/, accessed
March 2010.

AUTHOR INFORMATION

Stacey Montresor, Undergraduate Computer Science
Student, Rowan University, USA, smontronj@gmail.com

Jennifer Kay, Associate Professor, Computer Science
Department, Rowan University, USA, kay@rowan.edu

Michel Tokic, Research Assistant, Laboratory of
Autonomous Mobile Servicerobots (ZAFH AMSER),
University of Applied Sciences Ravensburg-Weingarten,
Germany, tokicm@hs-weingarten.de

Jonathan Summerton, Undergraduate Computer Science
Student, Rowan University, USA,
summer74@students.rowan.edu

