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Abstract - In a typical introductory AI class, the topic of 
reinforcement learning may be allocated only a few 
hours of class time. One engaging example of 
reinforcement learning uses a crawling robot that learns 
to use its two-degree-of-freedom arm to drag itself 
forward. Unfortunately, the cost of the required 
hardware is prohibitively expensive for many 
departments for what is typically a once-a-semester 
demonstration. So we decided to port the algorithm to a 
platform that many departments may already have on 
hand: the LEGO Mindstorms RCX 2.0. Initially the task 
seemed relatively straightforward: build a robot base out 
of LEGO parts and implement the algorithm in the Not 
Quite C language. However the challenges of designing a 
robot arm without servos and attempting to trim code 
down to a size that would fit on the RCX has proven to 
be as educational to the undergraduates working on the 
project as we hope the final product will be to students in 
AI classes. This paper describes the challenges we have 
faced and the solutions we have implemented, as well as 
the work that remains to be completed. 
 
Index Terms –Artificial Intelligence, Computer Science 
Education, crawling robot, LEGO Mindstorms RCX 2.0, Not 
Quite C (NQC), reinforcement learning, robotics 

INTRODUCTION 

In a typical introductory AI class, the topic of reinforcement 
learning [1] may be allocated only a few hours of class time. 
Kimura et. al [2] and Tokic et. al [3] developed an engaging 
example of reinforcement learning using a crawling robot 
that learns to use its two-degree-of-freedom arm to drag 
itself forward. The robot learns to move forward using value 
iteration or Q-learning [1] over the span of roughly 15-20 
seconds. The system is particularly attractive pedagogically 
because it incorporates a visualization tool that shows the 
two dimensional state space in which the robot actions are 
moves to neighboring states in the two dimensional grid 
world. 
 Appealing as this system is, the expense of purchasing 
the specialized robot platform is beyond the means of many 
computer science departments for such limited use. We 
decided to port the algorithm to a platform that is 
inexpensive and that many departments may already have on 

hand: the LEGO Mindstorms RCX 2.0 [4][5]. This is from 
the first generation of LEGO robotic kits, and has 
subsequently been supplanted by the NXT.  

Initially the task seemed relatively straightforward: 
build a robot base out of LEGO parts supplied with the RCX 
2.0 kit and implement the algorithm in the Not Quite C 
(NQC) language [6][7]. However the challenges of 
designing a robot arm without servos and attempting to trim 
code down to a size that would fit on the RCX has proven to 
be as educational to the Computer Science undergraduate 
students working on the project as we hope the final product 
will be to students in AI classes. 

ROBOT HARDWARE SETUP 

Our LEGO Robot was built in the image of Tokic’s crawling 
robot (Figure 1). The LEGO robot is controlled by the RCX 
2.0 brick [4][5] which is mounted on top of the robot. The 
two arm joints are driven by 9v motors. The first joint 
connects the arm to the base and the second joint connects 
the “claw” to the arm.  
 

FIGURE 1: TOKIC’S ORIGINAL CRAWLER AND OUR LEGO RCX VERSION  
 

The original RCX sets only provide motors that can be 
moved for a particular amount of time, rather than to a 
specified angle. Thus we needed to construct a way to sense 
the position of the two joints, as well as to determine the 
movement of the robot’s single axle wheel. Our first plan 
was to supplement the LEGO parts available in the standard 
RCX kits with three LEGO rotation sensors (LEGO #9756) 
which report changes in rotation rather than absolute 
position, but we still needed a way to ensure that the two 
joints began in the correct initial positions. We added two 
touch sensor bricks (already included with the kit) and 
initialize the joints by moving them into their uppermost 
positions until the touch sensors are triggered, ensuring that 
the start position is always the same. But then we 
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encountered the first (of many) limitations we would have to 
overcome because of our choice of platform: the RCX 2.0 
brick has three input connections. While touch sensors can 
be combined on a single input connection, the rotation 
sensors cannot and we had to eliminate one rotation sensor. 
Further evaluation of the joints showed that the effect of the 
force on the claw was harder to predict than the constant 
weight of the arm, therefore we opted to keep the rotation 
sensor on the claw. However, over time our estimate of the 
positions of both joints still degrades. To alleviate this, 
whenever the joints are placed in the first or second position, 
we reinitialize using the corresponding touch sensor. 

CODING IN A CONFINED SPACE  

Since our ultimate goal is to create a classroom 
demonstration that can be built with hardware that many 
schools have on hand or can acquire cheaply, we continue to 
believe that our choice of the LEGO RCX platform is a good 
one. Nonetheless, compressing the code down to a size that 
will fit into its 16K of RAM has been a challenge. NQC 
allows only 8 “subroutines” which provide a single copy of 
code shared between different callers, but do not have 
arguments. There is no limit to the number of inline 
"functions” used other than the overall code size must be 
within the 16K limit [6]. 

We implemented the value-iteration learning algorithm 
as used on the robot in [3] as closely as the RCX 2.0 brick 
would allow. To ensure our understanding of the value-
iteration algorithm, we first simulated the algorithm using 
Java using the same reward model as in [3] and confirmed 
that our implementation matched the original by successfully 
regenerating the same values with our simulation.  
 The next step seemed simple, code a few methods to 
handle the movements and re-implement the simulated 
algorithm using NQC. At this point, it became necessary to 
scale down the state-space model used in [3] from 5x5 to 
3x3. The RCX 2.0 brick limits us to the use of 32 global 
variables and 16 local variables [6]. To implement a 5x5 
state space requires 125 variables to store the state and 
reward values. By reducing the state space to a 3x3 grid we 
maintain a large enough space to include a subset that would 
represent an optimal cycle while requiring only 33 variables 
to store the state and reward values. Nonetheless, in addition 
to the variables needed to store the current state, we needed 
to store information about the action to be completed and the 
last sensor reading, and so we needed a total of 36 global 
variables, still more than we had available. 
 NQC variables are 16-bit signed integers. Using bit 
manipulation we were able to combine three reward values 
into a single variable and we use this technique to store the 
left/right reward values. Though this frees up the total 
number of variables needed, the additional lines of code to 
implement the compression and uncompression algorithm 
add to our RAM consumption.  

We initially coded the joint movements using three 
methods to execute the actual movements to be made.  
Within these methods, the compression function needed to 

be called which prevented them from being “subroutines” 
since in NQC subroutines cannot call other subroutines! To 
reduce the memory usage resulting from inline functions, 
these three methods were broken down into 24 functions 
representing individual moves from one state to the next. 
 Due to the lack of variables, we are not able to store 
individual state’s policies. Instead, during exploitation we 
iterate through all neighboring states and comparing the 
possible reward values, choose the action that result in the 
greatest reward value. 

MODIFYING THE LEARNING ALGORITHM 

The discounting factor, γ, of the value-iteration algorithm 
has a range 0 < γ < 1. Tokic et. al’s experiments [3] resulted 
in a recommended discounting factor of 0.9 for short 
learning times finding the optimal cycle. Since the RCX 2.0 
brick is restricted to the use of integers only, we are forced 
to use a value of 1 for the discounting factor. While setting 
the discounting factor to 1 removes the theoretical guarantee 
that the value iteration algorithm will converge, we have 
demonstrated in simulation that the robot can learn a 
potentially suboptimal forward-walking policy with a 
discounting factor of 1. 
 We used a simple ε-Greedy technique to regulate 
exploration and exploitation. This is accomplished by 
randomly choosing a value between [0, 1] and comparing it 
to ε, which is set to a high value initially and decreased 
throughout the learning process. Restricted to the use of 
integers, we randomly choose values from [0, 500]. We set ε 
to 500 at the start of the learning process. After an action is 
completed we decrease ε by 10 similar to [3]. Alternatively, 
instead of decreasing the value of epsilon, a constant value 
of epsilon (e.g. epsilon=50) may also be used. 

CURRENT STATUS 

Our hardware design is complete, and we have demonstrated 
that our robot can “walk” forward when we hardcode the 
sequence of states in our 3x3 grid to be visited. After much 
code manipulation, our version of the code is small enough 
to be loaded into the RCX 2.0. In our current 
implementation, the robot randomly explores and exploits 
throughout the 9 possible states and builds the associated 
reward table. The resulting values can be viewed through the 
Bricx Command Center. We are currently experimenting 
with various values for ε that will result in at least a 
successful cycle, if not the optimal cycle, for consistently 
learning to successfully walk forward. 

FUTURE WORK 

For classroom use, we would like to transmit the data related 
to the states throughout the process into a form that is 
accessible to all students that will allow them to evaluate the 
steps in determining the optimal cycle. We are also 
developing a full web site that will provide step-by-step 
instructions on how to replicate our system so that others 
may use it in their AI classes. 
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